Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nature ; 628(8009): 736-740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658684

RESUMO

Deployed optical clocks will improve positioning for navigational autonomy1, provide remote time standards for geophysical monitoring2 and distributed coherent sensing3, allow time synchronization of remote quantum networks4,5 and provide operational redundancy for national time standards. Although laboratory optical clocks now reach fractional inaccuracies below 10-18 (refs. 6,7), transportable versions of these high-performing clocks8,9 have limited utility because of their size, environmental sensitivity and cost10. Here we report the development of optical clocks with the requisite combination of size, performance and environmental insensitivity for operation on mobile platforms. The 35 l clock combines a molecular iodine spectrometer, fibre frequency comb and control electronics. Three of these clocks operated continuously aboard a naval ship in the Pacific Ocean for 20 days while accruing timing errors below 300 ps per day. The clocks have comparable performance to active hydrogen masers in one-tenth the volume. Operating high-performance clocks at sea has been historically challenging and continues to be critical for navigation. This demonstration marks a significant technological advancement that heralds the arrival of future optical timekeeping networks.


Assuntos
Dispositivos Ópticos , Oceano Pacífico , Fatores de Tempo , Eletrônica/instrumentação , Oceanos e Mares
2.
Light Sci Appl ; 12(1): 83, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009814

RESUMO

The commercialization of atomic technologies requires replacing laboratory-scale laser setups with compact and manufacturable optical platforms. Complex arrangements of free-space beams can be generated on chip through a combination of integrated photonics and metasurface optics. In this work, we combine these two technologies using flip-chip bonding and demonstrate an integrated optical architecture for realizing a compact strontium atomic clock. Our planar design includes twelve beams in two co-aligned magneto-optical traps. These beams are directed above the chip to intersect at a central location with diameters as large as 1 cm. Our design also includes two co-propagating beams at lattice and clock wavelengths. These beams emit collinearly and vertically to probe the center of the magneto-optical trap, where they will have diameters of ≈100 µm. With these devices we demonstrate that our integrated photonic platform is scalable to an arbitrary number of beams, each with different wavelengths, geometries, and polarizations.

3.
Artigo em Inglês | MEDLINE | ID: mdl-20211772

RESUMO

We describe recent progress on the JILA Sr optical frequency standard, which has a systematic uncertainty at the 10(¿16) fractional frequency level. The dominant contributions to the systematic error are from blackbody radiation shifts and collisional shifts. We discuss the blackbody radiation shift and propose measurements and experimental protocols that should reduce its systematic contribution. We discuss how collisional frequency shifts can arise in an optical lattice clock employing fermionic atoms, and experimentally demonstrate how the uncertainty in this density-dependent correction to the clock frequency is reduced.

4.
Phys Rev Lett ; 101(17): 170504, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18999733

RESUMO

We present a complete scheme for quantum information processing using the unique features of alkaline-earth-metal atoms. We show how two completely independent lattices can be formed for the 1S0 and 3P0 states, with one used as a storage lattice for qubits encoded on the nuclear spin, and the other as a transport lattice to move qubits and perform gate operations. We discuss how the 3P2 level can be used for addressing of individual qubits, and how collisional losses from metastable states can be used to perform gates via a lossy blockade mechanism.

5.
Chemphyschem ; 9(3): 375-82, 2008 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-18275047

RESUMO

Cooling and trapping of neutral atoms using laser techniques has enabled extensive progress in precise, coherent spectroscopy. In particular, trapping ultracold atoms in optical lattices in a tight confinement regime allows us to perform high-resolution spectroscopy unaffected by atomic motion. We report on the recent developments of optical lattice atomic clocks that have led to optical spectroscopy coherent at the one second timescale. The lattice clock techniques also open a promising pathway toward trapped ultracold molecules and the possible precision measurement opportunities such molecules offer.

6.
Phys Rev Lett ; 98(8): 083002, 2007 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-17359093

RESUMO

Aided by ultrahigh resolution spectroscopy, the overall systematic uncertainty of the 1S0-3P0 clock resonance for lattice-confined 87Sr has been characterized to 9 x 10(-16). This uncertainty is at a level similar to the Cs-fountain primary standard, while the potential stability for the lattice clocks exceeds that of Cs. The absolute frequency of the clock transition has been measured to be 429 228 004 229 874.0(1.1) Hz, where the 2.5 x 10(-15) fractional uncertainty represents the most accurate measurement of a neutral-atom-based optical transition frequency to date.

7.
Science ; 314(5804): 1430-3, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17138896

RESUMO

Highest-resolution laser spectroscopy has generally been limited to single trapped ion systems because of the rapid decoherence that plagues neutral atom ensembles. Precision spectroscopy of ultracold neutral atoms confined in a trapping potential now shows superior optical coherence without any deleterious effects from motional degrees of freedom, revealing optical resonance linewidths at the hertz level with a good signal-to-noise ratio. The resonance quality factor of 2.4 x 10(14) is the highest ever recovered in any form of coherent spectroscopy. The spectral resolution permits direct observation of the breaking of nuclear spin degeneracy for the 1S0 and 3P0 optical clock states of 87Sr under a small magnetic bias field. This optical approach for excitation of nuclear spin states allows an accurate measurement of the differential Landé g factor between 1S0 and 3P0. The optical atomic coherence demonstrated for collective excitation of a large number of atoms will have a strong impact on quantum measurement and precision frequency metrology.

8.
Phys Rev Lett ; 96(3): 033003, 2006 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-16486696

RESUMO

With ultracold 87Srconfined in a magic wavelength optical lattice, we present the most precise study (2.8 Hz statistical uncertainty) to date of the 1S0-3P0 optical clock transition with a detailed analysis of systematic shifts (19 Hz uncertainty) in the absolute frequency measurement of 429 228 004 229 869 Hz. The high resolution permits an investigation of the optical lattice motional sideband structure. The local oscillator for this optical atomic clock is a stable diode laser with its hertz-level linewidth characterized by an octave-spanning femtosecond frequency comb.

9.
Phys Rev Lett ; 97(23): 233001, 2006 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-17280198

RESUMO

We propose a combination of electromagnetically induced transparency-Raman and pulsed spectroscopy techniques to accurately cancel frequency shifts arising from electromagnetically induced transparency fields in forbidden optical clock transitions of alkaline earth atoms. At appropriate detunings, time-separated laser pulses are designed to trap atoms in coherent superpositions while eliminating off-resonance ac Stark contributions, achieving efficient population transfer up to 60% with inaccuracy <10(-17). Results from the wave-function formalism are confirmed by the density matrix approach.

10.
Phys Rev Lett ; 94(15): 153001, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904137

RESUMO

By varying the density of an ultracold 88Sr sample from 10(9) to>10(12) cm(-3), we make the first definitive measurement of the density-related frequency shift and linewidth broadening of the 1S0-3P1 optical clock transition in an alkaline earth system. In addition, we report the most accurate measurement to date of the 88Sr 1S0-3P1 optical clock transition frequency. Including a detailed analysis of systematic errors, the frequency is [434 829 121 312 334+/-20(stat)+/-33(syst)] Hz.

11.
Phys Rev Lett ; 93(7): 073003, 2004 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-15324232

RESUMO

We present an extensive study of the unique thermal and mechanical dynamics for narrow-line cooling on the 1S0-3P1 88Sr transition. For negative detuning, trap dynamics reveal a transition from the semiclassical regime to the photon-recoil-dominated quantum regime, yielding an absolute minima in the equilibrium temperature below the single-photon-recoil limit. For positive detuning, the cloud divides into discrete momentum packets whose alignment mimics lattice points on a face-centered-cubic crystal. This novel behavior arises from velocity selection and "positive feedback" acceleration due to a finite number of photon recoils. Cooling is also achieved with blue-detuned light around a velocity where gravity balances the radiative force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...